

B.Sc. Degree Program Faculty of Applied Sciences University of Sri Jayewardenepura

Course Title	Design and Analysis of Experiments
Course Code	STA 225 2.0
Credit Value	02
Status	Core
Year/ Level	Year 2
Semester	2
Theory: Practical: Independent Learning	30:00:70
Other: Pre-requisite course/s	STA 114 2.0 Probability and Distribution Theory I,
	STA 123 2.0 Probability and Distribution Theory II,
	STA 124 1.5 Data Analysis I, STA 213 2.0 Statistical In-
	ference, STA 226 1.5 Data Analysis II, 224 2.0 Regression
	Analysis

Aims of the Course:

- To introduce the need and the importance of designing an experiment.
- To provide an in-depth coverage of various designing techniques.

Intended Learning Outcomes:

On the successful completion of this course, the student should be able to:

- 1. Recognize the response and factors to be studied, experimental units, blocking factors in a given problem.
- 2. Plan an experiment to meet the objectives. given problem and interpret the results.
- 3. Perform pairwise comparisons
- 4. Select and apply a suitable design for a given problem and interpret the results.
- 5. Identify the limitations of applying the designs you have learned to any practical situation
- 6. Use regression approach to estimate the model parameters and test their significance.

Course Content:

- 1. Introduction: Experimental studies and observational studies, Basic concepts and terminology
- 2. Completely Randomized Design Building the model, ANOVA, Analysis of factor level means, Multiple comparison techniques, Testing model adequacy, Analysis using R
- 3. Designs with one blocking variable Randomized Complete Block Design, Model for Randomized Complete Block design, ANOVA and testing hypotheses, Evaluation of appropriateness of the model, Analysis using R programming language, Incomplete Block Designs
- 4. Designs with more than one blocking variables Latin Square Design, Latin Square model, Analysis of Latin Square experiments

5. Two Factor experiments

- Two factor experiments, Building the model, Main effects and interaction effects, ANOVA
- 6. Regression approach for parameter estimation and test of significance in some selected designs.

Topic No.	Topic/Sub Topic	No. of Hrs			Teaching	Assessment	ILO
		Т	T P IL		Method	Criteria	Alignment
1	Introduction: Experimen- tal studies and observational studies, Basic concepts and terminology	2	0	4	Lecture/ Practice ques- tions		1
2	Completely Randomized De- sign	2	0	4	Lecture		2, 3
3	Completely Randomized De- sign	2	0	4	Lecture/ Flipped class- room/ Practice questions		2,3
4	Completely Randomized De- sign	2	0	4	Lecture/ R programming practice questions FA 1: Quiz	10% of Final Marks	2,3
5	Designs with one blocking variable	2	0	4	Lecture/ Practice ques- tions		2, 3
6	Designs with one blocking variable	2	0	5	Lecture/ R programming practice questions		2, 3
7	Designs with one blocking variable	2	0	5	Lecture/ R programming practice questions/ Vir- tual Discussion Forum		2, 3
8	Designs with more than one blocking variables	2	0	5	Lecture/ Virtual Discus- sion Forum/ R program- ming practice questions FA 2: Quiz	10% of Final Marks	2, 3
9	Designs with more than one blocking variables	2	0	5	Lecture/ R programming practice questions		2, 3
10	Two Factor experiments	2	0	5	Lecture/R programming 20% of Fin practice questions Marks FA 3: Quiz		2, 3, 4
11	Two Factor experiments	2	0	5	Lecture/ R programming practice questions		4, 5
12	Regression approach for pa- rameter estimation and test of significance in some se- lected designs	2	0	5	Lecture/ R programming practice questions		6
13	Applications with R pro- gramming	2	0	5	Lecture/ R programming practice questions		4, 5, 6
14	Case study	2	0	5	Lecture/ R programming practice questions		4, 5, 6
15	Revision and ways to con- tinue learning DOE	2	0	5	Lecture/ R programming practice questions		4, 5, 6
	Total	30	00	70			

Scope and Schedule of Teaching - Learning Activities:

Linking Program Outcomes with ILOs:

Program Outcomes: B.Sc. General degree

1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in respective subject areas (statistics).

- 2. Communicate efficiently and effectively in the respective subject areas using written, oral, visual and/or electronic forms.
- 3. Facilitate, and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject based knowledge and skills creatively in making appropriate judgements in changing situations.
- 5. Integrate creativity and innovation to achieve entrepreneurial competencies.
- 6. Implement solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	***	*		*			
ILO 2	***	***		**			
ILO 3	**	**			**		
ILO 4	***	***			**		*
ILO 5	***	***	***	***	***	***	***
ILO 6	***	***	***	***	***	***	

*** - Strongly linked; ** - Medium linked; * - Weekly linked

Mode of Assessment: Formative Assessment (FA): FA1 10% + FA2 10% + FA3 20% = 40% of total marks Summative Assessment (SA): End Semester Examination: 2-hour paper covering MCQs and or Short Questions, Structured Essay-type questions and Essay-type question = 60% of total marks

- References:
 - Talagala, T. S. (2021). Course website: 225 2.0 Design of Experiments, Course website. https://smartdoe.netlify.app/
 - Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
 - Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models.